Hanging Pictures and Tiling Chessboards

MAN CHEUNG TSUI / MATH POSTDOC
FSU / SOCIETY OF UNDERGRADUATE MATH STUDENTS

Hanging Pictures

Hang a picture on two nails ...

Can you do this?

川

Can you do this?
Try three nails.

No nail.
Every loop shrinks to a constant loop (a point).

No nail.
Every loop shrinks to a constant loop (a point).

One nail.

No nail.
Every loop shrinks to a constant loop (a point).

One nail.

No nail.
Every loop shrinks to a constant loop (a point).

One nail.

No nail.
Every loop shrinks to a constant loop (a point).

One nail.

$x \cdot x=x^{2}$

No nail.
Every loop shrinks to a constant loop (a point).

One nail.

$x \cdot x=x^{2}$

No nail.
Every loop shrinks to a constant loop (a point).

One nail.

$x \cdot x=x^{2}$

No nail.
Every loop shrinks to a constant loop (a point).

One nail.

$x \cdot x=x^{2}$

No nail.
Every loop shrinks to a constant loop (a point).

One nail.

$x \cdot x=x^{2}$

(constant loop)

With two nails,

Finger position is "basepoint"

With two nails,

With two nails,

With two nails,

Such a loop = string of letters in alphabet x, y
$=$ word in generators x, y

With two nais, $\quad: \cdot \stackrel{?}{=} \odot \cdot(x y \stackrel{?}{=} y x$

With two nails,

$x y \stackrel{?}{=} y x$

Experiment!

With two nails,

Experiment!

$$
x y \stackrel{?}{=} y x
$$

$$
L \cdot x^{-1}
$$

$$
x y x^{-1} \stackrel{?}{=} y
$$

With two nails,

Experiment!

$$
x y \stackrel{?}{=} y x
$$

$$
\sum \cdot x^{-1}
$$

$$
L \cdot y^{-1}
$$

$$
x y x^{-1} y^{-1} \neq 1
$$

falls

With two nails,

Experiment!

$$
x y \neq y x
$$

$$
x y x^{-1} \neq y
$$

$$
\sum \cdot y^{-1}
$$

$$
x y x^{-1} y^{-1} \neq 1
$$

Picture-hanging solution for two nails.

Fundamental group of a surface X with basepoint $p \in X$:

$$
\pi_{1}(X, p)=\{\text { loops on } X \text { starting at } p\}
$$

Here, two loops are "the same" if one loop deforms to the other loop.

Fundamental group of a surface X with basepoint $p \in X$:

$$
\pi_{1}(X, p)=\{\text { loops on } X \text { starting at } p\}
$$

Here, two loops are "the same" if one loop deforms to the other loop.

$$
\pi_{1}(\text { plane }, p)=\{1\}
$$

Fundamental group of a surface X with basepoint $p \in X$:

$$
\pi_{1}(X, p)=\{\text { loops on } X \text { starting at } p\}
$$

Here, two loops are "the same" if one loop deforms to the other loop.
$\pi_{1}($ plane,$p)=\{1\}$
π_{1} (plane missing one point, p) $=\langle x\rangle \leftarrow$ words generated by x
$\pi_{1}($ plane missing two points, $p)=\langle x, y\rangle \leftarrow$ words generated by x, y
0

$$
0-2 \rightarrow
$$

$$
\begin{array}{r}
\xrightarrow{\text { cut! }}, a+r a b a^{-1} b^{-1}=1 \\
\pi_{1}\left(\sim a, b\left|a b a^{-1} b^{-1}=1\right\rangle\right.
\end{array}
$$

$$
a b a a b=a a b a b=a a a b b=a^{3} b^{2}
$$

$$
\pi_{1}(\circlearrowleft, \infty)=\underset{\substack{\langle a, b \\ \text { generators }}}{\substack{\text { relations } \\ \text { (simplifying rules) }}}|\underset{a b=b a\rangle}{ }\rangle
$$

Tiling Chessboards

Tile a chessboard with dominoes

Tile a chessboard with dominoes

Yes!

Tile a chessboard with dominoes ... with the two corners removed

Yes!

Tile a chessboard with dominoes ... with the two corners removed

Yes!

Tile a chessboard with dominoes ... with the two corners removed

Yes!

Tile a chessboard with dominoes ... with the two corners removed

Yes!

Tile a chessboard with dominoes ... with the two corners removed

Yes!

Tile a chessboard with dominoes ... with the two corners removed

Yes!

No! (But why?)

Assign word to region

Assign word to region

$$
W(T)=x x y x^{-1} x^{-1} y^{-1}=x^{2} y x^{-2} y^{-1}
$$

Shrink region R by tile shape $T \Rightarrow$ simplify $W(R)$ by the rule $W(T)=1$.

Shrink region R by tile shape $T \Rightarrow$ simplify $W(R)$ by the rule $W(T)=1$.

$$
W(R)=x x x y y x^{-1} x^{-1} x^{-1} y^{-1} y^{-1}=
$$

Shrink region R by tile shape $T \Rightarrow$ simplify $W(R)$ by the rule $W(T)=1$.

$$
W(R)=x x x y y x^{-1} x^{-1} x^{-1} y^{-1} y^{-1}=
$$

\square

$$
x x y x^{-1} x^{-1} y^{-1}=1
$$

$$
\text { or } \quad x x y=y x x
$$

\square

Shrink region R by tile shape $T \Rightarrow$ simplify $W(R)$ by the rule $W(T)=1$.

$$
W(R)=x \underline{x x y} y x^{-1} x^{-1} x^{-1} y^{-1} y^{-1}=
$$

\square

$$
x x y x^{-1} x^{-1} y^{-1}=1
$$

$$
\text { or } \quad x x y=y x x
$$

\square

Shrink region R by tile shape $T \Rightarrow$ simplify $W(R)$ by the rule $W(T)=1$.

$$
W(R)=x \underline{x x y} y x^{-1} x^{-1} x^{-1} y^{-1} y^{-1}=x y x x y x^{-1} x^{-1} y^{-1} y^{-1}=W\left(R^{\prime}\right)
$$

\square

$$
x x y x^{-1} x^{-1} y^{-1}=1
$$

or $x x y=y x x$ \square

If R can be tiled by tile shapes $T_{1}, T_{2}, \ldots, T_{r}$,

If R can be tiled by tile shapes $T_{1}, T_{2}, \ldots, T_{r}$, Then $W(R)$ simplifies to 1 by rules $W\left(T_{1}\right)=1, \ldots, W\left(T_{r}\right)=1$.

If R can be tiled by tile shapes $T_{1}, T_{2}, \ldots, T_{r}$, Then $W(R)$ simplifies to 1 by rules $W\left(T_{1}\right)=1, \ldots, W\left(T_{r}\right)=1$.

Theorem. (Conway-Lagarias, 1990)
If $\mathrm{W}(R)$ does not simplify to 1 by rules $\mathrm{W}\left(T_{1}\right)=1, \ldots, \mathrm{~W}\left(T_{\mathrm{r}}\right)=1$,
Then R cannot be tiled by tile shapes $T_{1}, T_{2}, \ldots, T_{r}$.

For the chessboard missing corners

$$
\begin{aligned}
& \text { not simplify to } 1 \text { using } \\
& W(\square)=1 \text { and } W(\infty)=1
\end{aligned}
$$

Exercise.

Topological Data Analysis (TDA)

Three kinds of Type 2 Diabetes. Discovered 2015.

Topological Data Analysis (TDA)

Data has shape.

Three kinds of Type 2 Diabetes. Discovered 2015.

Topological Data Analysis (TDA)

Data has shape. Shape has meaning.

Three kinds of Type 2 Diabetes. Discovered 2015.

Coverage Problem

PERSON SEES
You Taco Bell
Aubrey McDonald's
Becky Taco Bell, McDonald's, GAP

Carlos McDonald's, Gamestop, GAP

David Taco Bell, Gamestop, GAP, Apple

Ellen Gamestop, Foot Locker

Fabio Apple, Foot Locker

Mall floorplan

Coverage Problem

PERSON	SEES		
You	Taco Bell		
Aubrey	McDonald's		
Becky	Taco Bell, McDonald's,		
GAP		\quad	McDonald's,
:---			
Gamestop, GAP			
Carlos			
Taco Bell, Gamestop,			
GAP, Apple			
Gamestop, Foot			
Locker			
Apple, Foot Locker			

Coverage Problem

Assume

Everyone has the same sight radius

Phone calls reveal all common things any number of people see

Group sees entire mall periphery

Question

Can the group see the entire mall premise?

Coverage Problem

PERSON SEES
You Taco Bell
Aubrey McDonald's
Becky Taco Bell, McDonald's, GAP

Carlos McDonald's, Gamestop, GAP

David Taco Bell, Gamestop, GAP, Apple

Ellen Gamestop, Foot Locker

Fabio Apple, Foot Locker

Build
 Simplicial Complex

Coverage Problem

PERSON	SEES
You	Taco Bell
Aubrey	McDonald's
Becky	Taco Bell, McDonald's, GAP
Carlos	McDonald's, Gamestop, GAP
David	Taco Bell, Gamestop, GAP, Apple
Ellen	Gamestop, Foot Locker
Fabio	Apple, Foot Locker

Build
 Simplicial Complex

Coverage Problem

PERSON SEES
You Taco Bell
Aubrey McDonald's
Becky Taco Bell, McDonald's, GAP

Carlos McDonald's, Gamestop, GAP

David Taco Bell, Gamestop, GAP, Apple

Ellen Gamestop, Foot Locker

Fabio Apple, Foot Locker

Build
 Simplicial Complex

Edge: 2 people see same store

Coverage Problem

PERSON SEES
You Taco Bell
Aubrey McDonald's
Becky Taco Bell, McDonald's, GAP

Carlos McDonald's, Gamestop, GAP

David Taco Bell, Gamestop, GAP, Apple

Ellen Gamestop, Foot Locker

Fabio Apple, Foot Locker

Build
 Simplicial Complex

Edge: 2 people see same store

Face: 3 people see same store

Coverage Problem

PERSON SEES
You Taco Bell
Aubrey McDonald's
Becky Taco Bell, McDonald's, GAP

Carlos McDonald's, Gamestop, GAP

David Taco Bell, Gamestop, GAP, Apple

Ellen Gamestop, Foot Locker

Fabio Apple, Foot Locker

Build

Simplicial Complex

Edge: 2 people see same store

Face: 3 people see same store

Disks cover region \Rightarrow Simplicial complex has no "holes".

Coverage Problem

PERSON SEES

You Taco Bell
Aubrey McDonald's
Becky Taco Bell, McDonald's, GAP

Carlos McDonald's, Gamestop, GAP

David Taco Bell, Gamestop, GAP, Apple

Ellen Gamestop, Foot Locker

Fabio Apple, Foot Locker

Build

Simplicial Complex

Edge: 2 people see same store

Face: 3 people see same store

Disks cover region \Rightarrow Simplicial complex has no "holes".

Coverage Problem

PERSON SEES
You Taco Bell
Aubrey McDonald's
Becky Taco Bell, McDonald's, GAP

Carlos McDonald's,
Gamestop, GAP
David Taco Bell, Gamestop, GAP, Apple

Ellen Gamestop, Foot Locker

Fabio Apple, Foot Locker

Build

Simplicial Complex

Edge: 2 people see same store

Face: 3 people see same store

Disks cover region \Rightarrow Simplicial complex has no "holes".

Our simplicial complex has hole! So disks don't cover region.

Coverage Problem

Sensor network (drones, etc.) with no GPS used for:

- surveillance (forest fire),
- ensure wifi coverage

RESOURCES ON TOPOLOGY

- Tadashi Tokieda's lectures on topology on YouTube. (Prerequisite: Calculus 3) <https://www.youtube.com/playlist?list=PLTBqohhFNBE_09L0i-If3fYXF5woAbrzJ >

Accompanying notes: "Topology in Four Days" in An Introduction to the Geometry and Topology of Fluid Flows.

RESOURCES ON TOPOLOGY

- Tadashi Tokieda's lectures on topology on YouTube. (Prerequisite: Calculus 3) < https://www.youtube.com/playlist?list=PLTBqohhFNBE_09LOi-If3fYXF5woAbrzJ >

Accompanying notes: "Topology in Four Days" in An Introduction to the Geometry and Topology of Fluid Flows.

RESOURCES ON TOPOLOGICAL DATA ANALYSIS (TDA)

- Learn more: talk to Thomas Needham or Washington Mio in FSU math department.
- Gunnar Carlsson, The Shape of Big Data < https://www.youtube.com/watch?v=L9iiJa1nZZk >
- Diabetes subtypes: < https://towardsdatascience.com/identification-of-type-2-diabetes-subgroups-through-topological-data-analysis-of-patient-similarity-91838f2ccf74 >
- An example of a topology-based algorithm called Mapper (2007) < https://www.youtube.com/watch?v=DD0_zPIEsqY >
- de Silva, Ghrist, Homological Sensor Networks < https://www.ams.org/notices/200701/fea-ghrist.pdf >

