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Assumption

F is a field of characteristic zero.
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How much can we simplify polynomials via
Tschirnhaus transformations over F?

p(x) = x2 + ax+ b
x=y−a/2

// q(y) = y2 + c (c = b− a2/4)

p(x) = x3 + ax2 + bx+ c
x=y−a/3

// q(y) = y3 + dy + e
y=(e/d)z

// r(z) = z3 + fz+ f

Consider the general polynomial over F:

p(x) = xn+an−1xn−1+· · ·+a0 (ai’s algebraically independent over F).
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How much can we simplify polynomials via
Tschirnhaus transformations over F?

Let d(n) be the min number of algebraically independent
coefficients of q(y), as q(y) ranges over the more general
“Tschirnhaus transformations” of p(x) over F(a0, ..., an−1).

n 2 3 4 5 6 7
d(n) 1 1 2 3 4

(BR) (Hermite and Klein) (BR) (A. Duncan, 2010)

J. Buhler and Z. Reichstein (1997) introduced essential dimension to
prove:

d(4) = 2, bn/2c ≤ d(n) ≤ n− 3 (n ≥ 5).
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Assumptions for the rest of the talk

F is a differential field, i.e. a field with a derivation ∂ : F→ F
like (F, ∂) = (C(x), d/dx), and chr F = 0.

Its constant field C = {c ∈ F | ∂(c) = 0} is algebraically closed and
properly contained in F.
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How much can we simplify n× nmatrix DEs?
An n× nmatrix DE Z′ = BZ is a gauge transformation of Y′ = AY
over F if Z = PY for some P ∈ GLn(F).

Consider the general matrix DE

Y′ = AY (Aij’s differentially independent over F)

i.e. the matrix entries Aij and their higher derivatives are
algebraically independent over F.

Let e(n) be the min number of differentially independent
coefficients of Z′ = BZ, as Z′ = BZ ranges over the gauge
transformations of Y′ = AY over

F〈Aij | 1 ≤ i, j ≤ n〉 = F(A(k)ij | 1 ≤ i, j ≤ n; k ≥ 0).
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How much can we simplify matrix DEs?

Can gauge transform Y′ = AY to some

Z′ = BZ, B =

⎛⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−b0 −b1 −b2 · · · −bn−1

⎞⎟⎟⎟⎠ .

So e(n) ≤ n.

Theorem (T.)

e(n) = n.
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Where did this Z′ = BZ come from?

Homogeneous linear differential equation of order n

p(y) = y(n) + an−1y(n−1) + · · · + a0y = 0

corresponds to n× nmatrix differential equation

Y′ = ApY, Y =

⎛⎜⎝ y
y′

· · ·
y(n−1)

⎞⎟⎠, Ap =

⎛⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

⎞⎟⎟⎟⎠
and also corresponds to differential module of rank n over F i.e.
vector space of dimension n over F with a derivation

M = F · y⊕ F · y′⊕ · · ·⊕ F · y(n−1), (y(i))′ := y(i+1)

(y(n−1))′ := −a0y − a1y′ − · · · − an−1y(n−1) .
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Objects of interest
Differential modules

Picard-Vessiot extensions

Differential torsors
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The Picard-Vessiot theory - “differential Galois
theory"
Given:

• An n× nmatrix DE Y′ = AY over F

• A differential field extension K of F again with constant field C

• A solution matrix y ∈ GLn(K), i.e., y′ = Ay

Then:

• The Picard-Vessiot ring of Y′ = AY is

R := F
[︁
yij, 1

det(y) | 1 ≤ i, j ≤ n
]︁
.

• The differential Galois group of R/F,

Gl∂(R/F) := {differential F-algebra automorphisms of R},

is isomorphic to G(C) for some closed subgroup G of GLn,C.

• We say R/F is a G-Picard-Vessiot extension.
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The Picard-Vessiot theory: examples over F = C(x)

Example. (Exponential)

Y′ = Y has solution y = ex over K = C((x)).

R = C(x)[ex, e−x]

F = C(x)

Gm

Any differential ring automorphism must take the solution ex to
y′ = y in R to another solution cex of the same equation, with c 6= 0,
so Gl∂(R/F) = Cx = Gm(C).
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The Picard-Vessiot theory: examples over F = C(x)

Example. (Logarithmic)

Y′ =

(︃
0 1
0 1/x

)︃
Y has a solution matrix y =

(︃
1 log x
0 1/x

)︃
over K = C((x− 1)).

R = C(x)[ log x]

F = C(x)

Ga

Any differential ring automorphism takes the solution log x to
y′ = 1/x in R to another solution log x+ c of the same equation, so
Gl∂(R/F) = C = Ga(C). 11/29
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Objects of interest
Differential modules

Picard-Vessiot extensions

Differential torsors
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Torsors in various categories (equipped with a Grothendieck topology)

G a group object in the appropriate category C .

X an object in C with a right G-action X × G→ X : x 7→ x.g.

X is a G-torsor if

X × G→ X × X : (x, g) 7→ (x, x.g)

is an isomorphism and X satisfies some “local triviality condition”.

C = Sets. A G-torsor X is just the group G that forgot its identity
but retains the G-action.

e

G = = Z/4Z acts on X = by rotation.
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Torsors in various categories (equipped with a Grothendieck topology)

C = TopY for a topological space Y. A G-torsor X is a principal
G-bundle, i.e., a continuous family of G’s parametrized over Y.

G = Z/2Z acts simply transitively on the fibers but there is no canonical way to identify each fiber with G

Trivial Z/2Z-bundle

Y =

X = “Mobius” bundle

Y =

X =

14/29



Torsors in various categories (equipped with a Grothendieck topology)

A Galois extension K/F with Galois group G satisfies

K ⊗F K ∼=
∏︁
G

K ∼= K ⊗F F[G] (by the normal basis theorem)

where F[G] is the coordinate ring of G when we view G as a finite
constant group scheme over F. Thus Spec(K) is a G-torsor over
Spec(F).

A G-Picard-Vessiot extension R/F satisfies

R⊗F R ∼= R⊗C C[G] as differential rings

with C[G] given the trivial derivation. Thus Spec(R) is a differential
G-torsor over Spec(F).
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Objects of interest
A summary

• Differential modules - intrinsic formulation of matrix differential
equations

• Picard-Vessiot extensions - differential Galois extensions for
matrix differential equations

• Differential torsors - Geometric formulation of Picard-Vessiot
extensions
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Differential essential dimension
“How to count parameters”

17/29



Differential essential dimension ed∂

The differential transcendence degree trdeg∂F K is the size of biggest
differentially independent subset of K over F.

Consider the following classes of objects:

• DiffEqn(K) =
{︀ n×nmatrix DE
over K up to gauge transformations

}︀
• Diffn(K) =

{︀(differential) isomorphism classes of
differential modules of rank n over K

}︀
• G -tors∂(K) =

{︀(differential) isomorphism classes of
differential G-torsors over K

}︀
Define:

• ed∂F(a) :=minK trdeg
∂

F K where K ranges over the
differential fields K that some a′ is defined over, where a′ ∼= a
in its class of objects.

• ed∂F(class of objects) = spK,a ed
∂

F(a), where K/F are
differential fields whose constant field is C, and a/K are objects
in that class. 18/29
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Results on the differential essential dimension

• Saw: ed∂F(general n× nmatrix DE) = e(n) ≤ n.

• ed∂F(G -tors
∂) = n for G = (Z/rZ)n,Gn

m,G
n
a.

Intuition. By Kummer theory and the Kolchin-Ostrowski
theorem, (Z/rZ)n-Galois extensions andGn

m- and
Gn

a-Picard-Vessiot extensions over K come from solving

– yri = ai (i = 1, ..., n),

– y′i = aiyi (i = 1, ..., n),

– y′i = ai (i = 1, ..., n),

respectively, over K. This gives an upper bound. The lower
bound is a nontrivial induction argument.
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Cohomology
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Cohomology classifies various classes of objects

In topology:{︀rank n real vector bundles
over Y up to iso

}︀ ∼= H1
(︁
Y,GLn(R)

)︁
∼=
{︁
principal GLn -bundles

over Y up to iso

}︁
In Galois cohomology:{︀ quadratic forms up to

linear change of variables over K
}︀ ∼= H1(K,On) ∼= On -tors(K)

{︁
iso classes of algebras over K

that are ∼=Mn(Ksep) over Ksep
}︁

central simple algebras

∼= H1(K,PGLn) ∼=
{︀iso classes of varieties over K

that are ∼= Pn over Ksep
}︀

Severi-Brauer varieties

“Cohomology provides a bridge between different classes of objects.”
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Cohomology classifies various classes of objects

We can construct a cohomology theory H1
∂
(K,GLn) analogous to

Galois cohomology, giving:

DiffEqn(K) ∼= Diffn(K) ∼= H1
∂
(K,GLn) ∼= GLn -tors∂(K)
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Answer
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General matrix differential equation

Under

DiffEqn(K) ∼= Diffn(K) ∼= H1
∂
(K,GLn) ∼= GLn -tors∂(K),

one shows:

general DE � // a “generic” differential GLn -torsor

Therefore:

n ≥ ed∂F(general DE) = ed
∂

F(this generic differential GLn -torsor)

= ed∂F(GLn -tors
∂)

≥ ed∂F(G
n
m -tors

∂) = n
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one shows:
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Computation.
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General matrix differential equation

Under

DiffEqn(K) ∼= Diffn(K) ∼= H1
∂
(K,GLn) ∼= GLn -tors∂(K),

one shows:

general DE � // a “generic” differential GLn -torsor

Therefore:

n ≥ ed∂F(general DE) = ed
∂

F(this generic differential GLn -torsor)

= ed∂F(GLn -tors
∂)

≥ ed∂F(G
n
m -tors

∂) = n

⇒ e(n) = ed∂(general DE) = n.
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Future directions
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Simplifying differential equations with more
general transformations

p(y) = y(n) + an−1y(n−1) + an−2y(n−2) + · · · + a0y
y=e−

1
n
∫︀
an−1 z
// q(z) = z(n) + 0 · z(n−1) + bn−2z(n−2) + · · · + b0z

How many more parameters can we eliminate from the general
differential equation if we allow more transformations like exp and∫︀
?
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Thanks! Questions?
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Extra slides
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Cohomology
 a linear algebraic group over C.
G a linear algebraic group over C with compatible -action.

A cocycle is a morphism of varieties a : (C)→ G(C) : σ 7→ aσ
satisfying the usual cocycle condition in Galois cohomology.

Two cocycles a and b are equivalent if there exists c ∈ (C) such that
aσ = c · bσ · c−1.

H1
∂
(,G) = {cocycles up to equivalence}

H1
∂
(F,G) = lim−→

R/F
Picard-Vessiot
extension

H1
∂
(Gl∂(R/F),G)
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