Differential Essential Dimension

Temple University, Graduate Student Conference in Algebra, Geometry, and Topology | May 21, 2021

Man Cheung Tsui
University of Pennsylvania

Assumption

F is a field of characteristic zero.

How much can we simplify polynomials via Tschirnhaus transformations over F?

$$
\begin{aligned}
& p(x)=x^{2}+a x+b \quad \underset{\sim}{x=y-a / 2} \quad q(y)=y^{2}+c \quad\left(c=b-a^{2} / 4\right) \\
& p(x)=x^{3}+a x^{2}+b x+c \quad \xrightarrow{x=y=a / 3} \\
& q(y)=y^{3}+d y+e \\
& y=(e / d) z \\
& r(z)=z^{3}+f z+f
\end{aligned}
$$

Consider the general polynomial over F:
$p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \quad\left(a_{i}^{\prime}\right.$'s algebraically independent over $\left.F\right)$.

How much can we simplify polynomials via Tschirnhaus transformations over F?

$$
\begin{aligned}
& p(x)=x^{2}+a x+b \quad \stackrel{x=y-a / 2}{\sim} \quad q(y)=y^{2}+c \quad\left(c=b-a^{2} / 4\right) \\
& p(x)=x^{3}+a x^{2}+b x+c \quad \underset{\sim}{x=y-a / 3} \\
& q(y)=y^{3}+d y+e \\
& y=(e / d) z \\
& r(z)=z^{3}+f z+f
\end{aligned}
$$

Consider the general polynomial over F:
$p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \quad\left(a_{i}^{\prime}\right.$'s algebraically independent over $\left.F\right)$.

How much can we simplify polynomials via Tschirnhaus transformations over F?

$$
\begin{aligned}
& p(x)=x^{2}+a x+b \quad \stackrel{x=y-a / 2}{\sim} q(y)=y^{2}+c \quad\left(c=b-a^{2} / 4\right) \\
& p(x)=x^{3}+a x^{2}+b x+c \quad \stackrel{x=y-a / 3}{\sim} q(y)=y^{3}+d y+e \\
& \xrightarrow[\sim]{y=(e / d) z} \quad r(z)=z^{3}+f z+f
\end{aligned}
$$

Consider the general polynomial over F:
$p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \quad\left(a_{i}\right.$'s algebraically independent over $\left.F\right)$.

How much can we simplify polynomials via

 Tschirnhaus transformations over F?$$
\begin{aligned}
& p(x)=x^{2}+a x+b \quad \xrightarrow{x=y-a / 2} \quad q(y)=y^{2}+c \quad\left(c=b-a^{2} / 4\right) \\
& p(x)=x^{3}+a x^{2}+b x+c \underbrace{\xrightarrow[y=y-a / d) z]{x=y / a}} \quad \begin{array}{l}
a(y)=y^{3}+d y+e \\
r(z)=z^{3}+f z+f
\end{array}
\end{aligned}
$$

Consider the general polynomial over F:
$p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \quad\left(a_{i}^{\prime}\right.$'s algebraically independent over $\left.F\right)$.

How much can we simplify polynomials via Tschirnhaus transformations over F?

$$
\begin{aligned}
& p(x)=x^{2}+a x+b \quad \xrightarrow{x=y-a / 2} \quad q(y)=y^{2}+c \quad\left(c=b-a^{2} / 4\right) \\
& p(x)=x^{3}+a x^{2}+b x+c \underbrace{\xrightarrow{x=y=-a / 3}} \quad \begin{array}{l}
a(y)=y^{3}+d y+e \\
r(z)=z^{3}+f z+f
\end{array}
\end{aligned}
$$

Consider the general polynomial over F:
$p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \quad$ (a_{i}^{\prime} 's algebraically independent over F).

How much can we simplify polynomials via Tschirnhaus transformations over F?

Let $d(n)$ be the min number of algebraically independent coefficients of $q(y)$, as $q(y)$ ranges over the more general "Tschirnhaus transformations" of $p(x)$ over $F\left(a_{0}, \ldots, a_{n-1}\right)$.

J. Buhler and Z. Reichstein (1997) introduced essential dimension to
prove:

$$
d(4)=2, \quad\lfloor n / 2\rfloor \leq d(n) \leq n-3 \quad(n \geq 5) .
$$

How much can we simplify polynomials via Tschirnhaus transformations over F?

Let $d(n)$ be the min number of algebraically independent coefficients of $q(y)$, as $q(y)$ ranges over the more general "Tschirnhaus transformations" of $p(x)$ over $F\left(a_{0}, \ldots, a_{n-1}\right)$.

n	2	3	4	5	6	7
$d(n)$	1	1	≤ 2	2	3	4
			(Hermite and Kliein)	(BR)	(A. Dunam. 200)	

J. Buhler and Z. Reichstein (1997) introduced essential dimension to
prove:

$$
d(4)=2, \quad\lfloor n / 2\rfloor \leq d(n) \leq n-3 \quad(n \geq 5) .
$$

How much can we simplify polynomials via Tschirnhaus transformations over F?

Let $d(n)$ be the min number of algebraically independent coefficients of $q(y)$, as $q(y)$ ranges over the more general "Tschirnhaus transformations" of $p(x)$ over $F\left(a_{0}, \ldots, a_{n-1}\right)$.

n	2	3	4	5	6	7
$d(n)$	1	1	≤ 2	2	3	4
			(Hermite and Kliein)	(BR)	(A. Dunam, 200)	

J. Buhler and Z. Reichstein (1997) introduced essential dimension to prove:

$$
d(4)=2, \quad\lfloor n / 2\rfloor \leq d(n) \leq n-3 \quad(n \geq 5)
$$

How much can we simplify polynomials via Tschirnhaus transformations over F?

Let $d(n)$ be the min number of algebraically independent coefficients of $q(y)$, as $q(y)$ ranges over the more general "Tschirnhaus transformations" of $p(x)$ over $F\left(a_{0}, \ldots, a_{n-1}\right)$.

n	2	3	4	5	6	7		
$d(n)$	1	1	2	2	3	4		
(BR)	(Hermite and Klin)						(BR)	(A. Duncan. 2010)
:---:								

J. Buhler and Z. Reichstein (1997) introduced essential dimension to prove:

$$
d(4)=2, \quad\lfloor n / 2\rfloor \leq d(n) \leq n-3 \quad(n \geq 5)
$$

How much can we simplify polynomials via Tschirnhaus transformations over F?

Let $d(n)$ be the min number of algebraically independent coefficients of $q(y)$, as $q(y)$ ranges over the more general "Tschirnhaus transformations" of $p(x)$ over $F\left(a_{0}, \ldots, a_{n-1}\right)$.

n	2	3	4	5	6	7
$d(n)$	1	1	2	2	3	4
(BR)			(Hermite and Klein)	(BR)	(A. Duncan, 2010)	

J. Buhler and Z. Reichstein (1997) introduced essential dimension to prove:

$$
d(4)=2, \quad\lfloor n / 2\rfloor \leq d(n) \leq n-3 \quad(n \geq 5)
$$

Assumptions for the rest of the talk

F is a differential field, i.e. a field with a derivation $\partial: F \rightarrow F$ like $(F, \partial)=(\mathbb{C}(x), d / d x)$, and char $F=0$.

Its constant field $C=\{c \in F \mid \partial(c)=0\}$ is algebraically closed and properly contained in F.

Assumptions for the rest of the talk

F is a differential field, i.e. a field with a derivation $\partial: F \rightarrow F$ like $(F, \partial)=(\mathbb{C}(x), d / d x)$, and char $F=0$.

Its constant field $C=\{c \in F \mid \partial(c)=0\}$ is algebraically closed and properly contained in F.

How much can we simplify $n \times n$ matrix DEs?

$A n n \times n$ matrix $D E Z^{\prime}=B Z$ is a gauge transformation of $Y^{\prime}=A Y$ over F if $Z=P Y$ for some $P \in G L_{n}(F)$.

Consider the general matrix DE

$$
Y^{\prime}=A Y \quad\left(A_{i j} \text { 's differentially independent over } F\right)
$$

i.e. the matrix entries $A_{i j}$ and their higher derivatives are algebraically independent over F.

Let $e(n)$ be the min number of differentially independent coefficients of $Z^{\prime}=B Z$, as $Z^{\prime}=B Z$ ranges over the gauge transformations of $Y^{\prime}=A Y$ over

$$
F\left\langle A_{i j} \mid 1 \leq i, j \leq n\right\rangle=F\left(A_{i j}^{(k)} \mid 1 \leq i, j \leq n ; k \geq 0\right)
$$

How much can we simplify $n \times n$ matrix DEs?

An $n \times n$ matrix $D E Z^{\prime}=B Z$ is a gauge transformation of $Y^{\prime}=A Y$ over F if $Z=P Y$ for some $P \in G L_{n}(F)$.

Consider the general matrix DE

$$
Y^{\prime}=A Y \quad\left(A_{i j} \text { 's differentially independent over } F\right)
$$

i.e. the matrix entries $A_{i j}$ and their higher derivatives are algebraically independent over F.

Let e(n) be the min number of differentially independent
coefficients of $Z^{\prime}=B Z$, as $Z^{\prime}=B Z$ ranges over the gauge
transformations of $Y^{\prime}=A Y$ over

$$
F\left\langle A_{i j} \mid 1 \leq i, j \leq n\right\rangle=F\left(A_{i j}^{(k)} \mid 1 \leq i, j \leq n ; k \geq 0\right)
$$

How much can we simplify $n \times n$ matrix DEs?

An $n \times n$ matrix $D E Z^{\prime}=B Z$ is a gauge transformation of $Y^{\prime}=A Y$ over F if $Z=P Y$ for some $P \in G L_{n}(F)$.

Consider the general matrix DE

$$
Y^{\prime}=A Y \quad\left(A_{i j} \text { 's differentially independent over } F\right)
$$

i.e. the matrix entries $A_{i j}$ and their higher derivatives are algebraically independent over F.

Let e(n) be the min number of differentially independent
coefficients of $Z^{\prime}=B Z$, as $Z^{\prime}=B Z$ ranges over the gauge
transformations of $Y^{\prime}=A Y$ over

$$
F\left\langle A_{i j} \mid 1 \leq i, j \leq n\right\rangle=F\left(A_{i j}^{(k)} \mid 1 \leq i, j \leq n ; k \geq 0\right) .
$$

How much can we simplify $n \times n$ matrix DEs?

An $n \times n$ matrix $D E Z^{\prime}=B Z$ is a gauge transformation of $Y^{\prime}=A Y$ over F if $Z=P Y$ for some $P \in G L_{n}(F)$.

Consider the general matrix DE

$$
Y^{\prime}=A Y \quad\left(A_{i j} \text { 's differentially independent over } F\right)
$$

i.e. the matrix entries $A_{i j}$ and their higher derivatives are algebraically independent over F.

Let $e(n)$ be the min number of differentially independent coefficients of $Z^{\prime}=B Z$, as $Z^{\prime}=B Z$ ranges over the gauge transformations of $Y^{\prime}=A Y$ over

$$
F\left\langle A_{i j} \mid 1 \leq i, j \leq n\right\rangle=F\left(A_{i j}^{(k)} \mid 1 \leq i, j \leq n ; k \geq 0\right)
$$

How much can we simplify matrix DEs?

Can gauge transform $Y^{\prime}=A Y$ to some

$$
Z^{\prime}=B Z, \quad B=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-b_{0} & -b_{1} & -b_{2} & \cdots & -b_{n-1}
\end{array}\right) \text {. }
$$

So $e(n) \leq n$.

Theorem (T.)
$e(n)-n$

How much can we simplify matrix DEs?

Can gauge transform $Y^{\prime}=A Y$ to some

$$
Z^{\prime}=B Z, \quad B=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-b_{0} & -b_{1} & -b_{2} & \cdots & -b_{n-1}
\end{array}\right) \text {. }
$$

So $e(n) \leq n$.
\square

How much can we simplify matrix DEs?

Can gauge transform $Y^{\prime}=A Y$ to some

$$
Z^{\prime}=B Z, \quad B=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-b_{0} & -b_{1} & -b_{2} & \cdots & -b_{n-1}
\end{array}\right) \text {. }
$$

So $e(n) \leq n$.

Theorem (T.)

$$
e(n)=n .
$$

Where did this $Z^{\prime}=B Z$ come from?

Homogeneous linear differential equation of order n

$$
p(y)=y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=0
$$

corresponds to $n \times n$ matrix differential equation

$$
Y^{\prime}=A_{p} Y, \quad Y=\left(\begin{array}{c}
y \\
y^{\prime} \\
\cdots \\
y^{(n-1)}
\end{array}\right), \quad A_{p}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}
\end{array}\right)
$$

and also corresponds to differential module of rank n over F i.e. vector space of dimension n over F with a derivation
$M=F \cdot y \oplus F \cdot y^{\prime} \oplus \cdots \oplus F \cdot y^{(n-1)}$,
$\begin{array}{cl}\left(y^{(i)}\right)^{\prime} & :=y^{(i+1)} \\ \left(y^{(n-1)}\right)^{\prime} & :=-a_{0} y-a_{i} y^{\prime}-\cdots-a_{n-1} y^{(n-1)} .\end{array}$

Where did this $Z^{\prime}=B Z$ come from?

Homogeneous linear differential equation of order n

$$
p(y)=y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=0
$$

corresponds to $n \times n$ matrix differential equation

$$
Y^{\prime}=A_{p} Y, \quad Y=\left(\begin{array}{c}
y \\
y^{\prime} \\
\cdots \\
y^{(n-1)}
\end{array}\right), \quad A_{p}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}
\end{array}\right)
$$

and also corresponds to differential module of rank n over F i.e. vector space of dimension n over F with a derivation

Where did this $Z^{\prime}=B Z$ come from?

Homogeneous linear differential equation of order n

$$
p(y)=y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=0
$$

corresponds to $n \times n$ matrix differential equation

$$
Y^{\prime}=A_{p} Y, \quad Y=\left(\begin{array}{c}
y \\
y^{\prime} \\
\cdots \\
y^{(n-1)}
\end{array}\right), \quad A_{p}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}
\end{array}\right)
$$

and also corresponds to differential module of rank n over F i.e. vector space of dimension n over F with a derivation
$M=F \cdot y \oplus F \cdot y^{\prime} \oplus \cdots \oplus F \cdot y^{(n-1),} \quad \begin{array}{ll}\left(y^{(0)}\right)^{\prime} \\ \left(y^{(n-1)}\right)^{\prime} & :=y^{(i+1)} \\ \left.:=-a_{0} y-a_{1} y^{\prime}-\cdots-a_{n-1-1} y^{(n-1)}\right)\end{array}$

Objects of interest

Differential modules

Picard-Vessiot extensions

Differential torsors

Objects of interest

Differential modules

Picard-Vessiot extensions

Differential torsors

The Picard-Vessiot theory - "differential Galois

theory"
Given:

- An $n \times n$ matrix DE $Y^{\prime}=A Y$ over F
- A differential field extension K of F again with constant field C
- A solution matrix $y \in G L_{n}(K)$, i.e., $y^{\prime}=A y$

Then:

- The Picard-Vessiot ring of $Y^{\prime}=A Y$ is

$$
R:=F\left[y_{i j}, \left.\frac{1}{\operatorname{det}(y)} \right\rvert\, 1 \leq i, j \leq n\right] .
$$

- The differential Galois group of R / F,
$\mathrm{Gal}^{\partial}(R / F):=\{$ differential F-algebra automorphisms of $R\}$,
is isomorphic to $\mathrm{G}(\mathrm{C})$ for some closed subgroup G of $\mathrm{G} \mathrm{L}_{n, C}$.
- We say R/F is a G-Picard-Vessiot extension.

The Picard-Vessiot theory - "differential Galois

theory"
Given:

- An $n \times n$ matrix DE $Y^{\prime}=A Y$ over F
- A differential field extension K of F again with constant field C
- A solution matrix $y \in G L_{n}(K)$, i.e., $y^{\prime}=A y$

Then:

- The Picard-Vessiot ring of $Y^{\prime}=A Y$ is

$$
R:=F\left[y_{i j}, \left.\frac{1}{\operatorname{det}(y)} \right\rvert\, 1 \leq i, j \leq n\right] .
$$

- The differential Galois group of R / F,
$\mathrm{Gal}^{\partial}(R / F):=\{$ differential F-algebra automorphisms of R \}, is isomorphic to $G(C)$ for some closed subgroup G of $G L_{n, c}$.
- We say R / F is a G-Picard-Vessiot extension.

The Picard-Vessiot theory: examples over $F=\mathbb{C}(x)$

Example. (Exponential)
$Y^{\prime}=Y$ has solution $y=e^{x}$ over $K=\mathbb{C}((x))$.

$$
R=\mathbb{C}(x)\left[e^{x}, e^{-x}\right]
$$

Any differential ring automorphism must take the solution e^{x} to
$y^{\prime}=y$ in R to another solution $c e^{x}$ of the same equation, with $c \neq 0$, so $\mathrm{Gal}^{2}(R / F)=\mathbb{C}^{x}=\mathbb{G}_{m}(\mathbb{C})$.

The Picard-Vessiot theory: examples over $F=\mathbb{C}(x)$

Example. (Exponential)

$Y^{\prime}=Y$ has solution $y=e^{x}$ over $K=\mathbb{C}((x))$.

$$
\begin{gathered}
R=\mathbb{C}(x)\left[e^{x}, e^{-x}\right] \\
F=\mathbb{C}(x)
\end{gathered}
$$

Any differential ring automorphism must take the solution e^{x} to $y^{\prime}=y$ in R to another solution $c e^{x}$ of the same equation, with $c \neq 0$, so $\mathrm{Gal}^{\partial}(R / F)=\mathbb{C}^{x}=\mathbb{G}_{m}(\mathbb{C})$.

The Picard-Vessiot theory: examples over $F=\mathbb{C}(x)$

Example. (Logarithmic)

$Y^{\prime}=\left(\begin{array}{cc}0 & 1 \\ 0 & 1 / x\end{array}\right) Y$ has a solution matrix $y=\left(\begin{array}{cc}1 & \log x \\ 0 & 1 / x\end{array}\right)$
over $K=\mathbb{C}((x-1))$.

$$
R=\mathbb{C}(x)[\log x]
$$

$$
F=\mathbb{C}(x)
$$

Any differential ring automorphism takes the solution $\log x$ to $y^{\prime}=1 / x$ in R to another solution $\log x+c$ of the same equation, so

The Picard-Vessiot theory: examples over $F=\mathbb{C}(x)$

Example. (Logarithmic)

$Y^{\prime}=\left(\begin{array}{cc}0 & 1 \\ 0 & 1 / x\end{array}\right) Y$ has a solution matrix $y=\left(\begin{array}{cc}1 & \log x \\ 0 & 1 / x\end{array}\right)$
over $K=\mathbb{C}((x-1))$.

$$
\begin{gathered}
R=\mathbb{C}(x)[\log x] \\
F=\mathbb{C}(x)
\end{gathered}
$$

Any differential ring automorphism takes the solution $\log x$ to
$y^{\prime}=1 / x$ in R to another solution $\log x+c$ of the same equation, so
$\operatorname{Gal}^{2}(R / F)=\mathbb{C}=\mathbb{G} a(\mathbb{C})$.

Objects of interest

Differential modules

Picard-Vessiot extensions

Differential torsors

Objects of interest

Differential modules

Picard-Vessiot extensions
Differential torsors

Torsors in various categories (equipped with a Grothendieck topology)

G a group object in the appropriate category \mathscr{C}.
X an object in \mathscr{C} with a right G-action $X \times G \rightarrow X: x \mapsto x . g$.
X is a G-torsor if

$$
X \times G \rightarrow X \times X:(x, g) \mapsto(x, x . g)
$$

is an isomorphism and X satisfies some "local triviality condition".
$\mathscr{C}=$ Sets. A G-torsor X is just the group G that forgot its identity but retains the G -action.

Torsors in various categories (equipead with c corthendieck topolog)

$\mathscr{C}=$ Top $_{Y}$ for a topological space Y. A G-torsor X is a principal G-bundle, i.e., a continuous family of G's parametrized over Y.

Trivial $\mathbb{Z} / 2 \mathbb{Z}$-bundle

"Mobius" bundle

$G=\mathbb{Z} / 2 \mathbb{Z}$ acts simply transitively on the fibers but there is no canonical way to identify each fiber with G

Torsors in various categories (equipene with a ciothendieck topolosy)

A Galois extension K/F with Galois group G satisfies

$$
K \otimes_{F} K \cong \prod_{G} K \cong K \otimes_{F} F[G] \quad \text { (by the normal basis theorem) }
$$

where $F[G]$ is the coordinate ring of G when we view G as a finite
constant group scheme over F. Thus $\operatorname{Spec}(K)$ is a G-torsor over
Spec(F).

A G-Picard-Vessiot extension R/F satisfies

$$
R \otimes_{F} R \cong R \otimes_{C} C[G] \text { as differential rings }
$$

with $C[G]$ given the trivial derivation. Thus $\operatorname{Spec}(R)$ is a differential G-torsor over Spec (F).

Torsors in various categories (equipene with a ciothendieck topolosy)

A Galois extension K/F with Galois group G satisfies

$$
K \otimes_{F} K \cong \prod_{G} K \cong K \otimes_{F} F[G] \quad \text { (by the normal basis theorem) }
$$

where $F[G]$ is the coordinate ring of G when we view G as a finite
constant group scheme over F. Thus $\operatorname{Spec}(K)$ is a G-torsor over Spec (F).

A G-Picard-Vessiot extension R/F satisfies

$$
R \otimes_{F} R \cong R \otimes_{C} C[G] \text { as differential rings }
$$

with C [G] given the trivial derivation. Thus $\operatorname{Spec}(R)$ is a differential G-torsor over Spec (F).

Torsors in various categories (equipped with a Grothendieck topology)

A Galois extension K/F with Galois group G satisfies

$$
K \otimes_{F} K \cong \prod_{G} K \cong K \otimes_{F} F[G] \quad \text { (by the normal basis theorem) }
$$

where $F[G$] is the coordinate ring of G when we view G as a finite constant group scheme over F. Thus $\operatorname{Spec}(K)$ is a G-torsor over Spec (F).

A G-Picard-Vessiot extension R/F satisfies

$$
R \otimes_{F} R \cong n \otimes_{C} C[G] \text { as differential rings }
$$

with $C[G]$ given the trivial derivation. Thus $\operatorname{Spec}(R)$ is a differential G-torsor over Spec (F).

Torsors in various categories (equipped with a Grothendieck topology)

A Galois extension K/F with Galois group G satisfies

$$
K \otimes_{F} K \cong \prod_{G} K \cong K \otimes_{F} F[G] \quad \text { (by the normal basis theorem) }
$$

where $F[G$] is the coordinate ring of G when we view G as a finite constant group scheme over F. Thus $\operatorname{Spec}(K)$ is a G-torsor over Spec (F).

A G-Picard-Vessiot extension R/F satisfies

$$
R \otimes_{F} R \cong R \otimes_{C} C[G] \text { as differential rings }
$$

with $C[G]$ given the trivial derivation. Thus $\operatorname{Spec}(R)$ is a differential G-torsor over Spec(F).

Objects of interest

A summary

- Differential modules - intrinsic formulation of matrix differential
equations
- Picard-Vessiot extensions - differential Galois extensions for
matrix differential equations
- Differential torsors \square
extensions

Objects of interest

A summary

- Differential modules - intrinsic formulation of matrix differential equations
- Picard-Vessiot extensions - differential Galois extensions for matrix differential equations
- Differential torsors - Geometric formulation of Picard-Vessiot extensions

Differential essential dimension

"How to count parameters"

Differential essential dimension ed^{∂}

The differential transcendence degree $\operatorname{trdeg}_{F}^{2} K$ is the size of biggest differentially independent subset of K over F.

Consider the following classes of objects:

- DiffE $\mathrm{q}_{n}(K)=\left\{\begin{array}{c}n \times n \text { matrix } \mathrm{DE} \\ \text { over } K \text { up to gauge transformations }\end{array}\right\}$
- Diff $_{n}(K)=\left\{\begin{array}{l}\text { (differential) isomorphism classes of } \\ \text { differential }\end{array}\right\}$
- G-tors ${ }^{\partial}(K)=\left\{\begin{array}{c}\text { (differential) isomorphism classes of } \\ \text { differential } G \text {-torsors over } K\end{array}\right\}$

Define:

- ed ${ }^{2}(\mathbb{\imath}):=$ min $_{k}$ trdeg $g_{F}^{\partial} \mathrm{K}$ where K ranges over the differential fields K that some a^{\prime} is defined over, where $a^{\prime} \cong a$ in its class of objects.
- $\mathrm{ed}^{2}($ class of obiects $)=\sup _{K, a} \mathrm{ed}_{F}^{\partial}(a)$, where K / F are differential fields whose constant field is C, and a / K are objects

Differential essential dimension ed^{∂}

The differential transcendence degree trdeg ${ }_{F}^{\partial} K$ is the size of biggest differentially independent subset of K over F.

Consider the following classes of objects:

- Diffeq $_{n}(K)=\left\{\begin{array}{l}\left.\quad \begin{array}{l}n \times n \text { matrix } \mathrm{DE} \\ \text { over } K \text { up to gauge transformations }\end{array}\right\}\end{array}\right.$
- Diff $_{n}(K)=\left\{\begin{array}{l}\text { (differential isomorphism classes of } \\ \text { differential modules of rank } n \text { over } K\end{array}\right\}$
- $G-$ tors $^{\partial}(K)=\left\{\begin{array}{c}\text { (differential) isomorphism classes of } \\ \text { differential } G \text {-torsors over } K\end{array}\right\}$

Define:

- $\operatorname{ed}_{F}^{\partial}(a):=\min _{K} \operatorname{trdeg}_{F}^{\partial} K$ where K ranges over the
differential fields K that some a^{\prime} is defined over, where $c^{\prime} \cong a$
in its class of objects.
- $\mathrm{ed}_{F}^{\partial}($ class of objects $)=\sup _{K, a} \mathrm{ed}_{F}^{\partial}(a)$, where K / F are
differential fields whose constant field is C, and a / K are objects

Differential essential dimension ed^{∂}

The differential transcendence degree trdeg ${ }_{F}^{\partial} K$ is the size of biggest differentially independent subset of K over F.

Consider the following classes of objects:

- Diffeq $_{n}(K)=\left\{\begin{array}{l}\left.\quad \begin{array}{l}n \times n \text { matrix } \mathrm{DE} \\ \text { over } K \text { up to gauge transformations }\end{array}\right\}\end{array}\right.$
- Diff $_{n}(K)=\left\{\begin{array}{l}\text { (differential) isomorphism classes of } \\ \text { differential modules of rank } n \text { over } K\end{array}\right\}$
- G-tors ${ }^{\partial}(K)=\left\{\begin{array}{c}\text { (differential) isomorphism classes of } \\ \text { differential } G \text {-torsors over } K\end{array}\right\}$

Define:

- $\operatorname{ed}_{F}^{\partial}(a):=\min _{K} \operatorname{trdeg}_{F}^{\partial} K$ where K ranges over the differential fields K that some a^{\prime} is defined over, where $a^{\prime} \cong a$ in its class of objects.
- $\operatorname{ed}_{F}^{\partial}($ class of objects $)=\sup _{K, a} \operatorname{ed}_{F}^{\partial}(a)$, where K / F are differential fields whose constant field is C, and a / K are objects in that class.

Results on the differential essential dimension

- Saw: $\operatorname{ed}_{F}^{\partial}($ general $n \times n$ matrix $D E)=e(n) \leq n$.

$$
\begin{aligned}
& \text { - } \mathrm{ed}_{F}^{\partial}\left(\mathrm{G} \text {-tors } s^{\partial}\right)=n \text { for } G=(\mathbb{Z} / r \mathbb{Z})^{n}, \mathbb{G}_{m}^{n}, \mathbb{G}_{a}^{n} . \\
& \text { Intuition. By Kummer theory and the Kolchin-Ostrowski } \\
& \text { theorem, }(\mathbb{Z} / r \mathbb{Z})^{n} \text {-Galois extensions and } \mathbb{G}_{m}^{n} \text { - and } \\
& \mathbb{G}_{a}^{n} \text {-Picard-Vessiot extensions over } K \text { come from solving } \\
& -y_{i}^{r}=a_{i} \quad(i=1, \ldots, n), \\
& -y_{i}^{\prime}=a_{i} y_{i} \quad(i=1, \ldots, n), \\
& -y_{i}^{\prime}=a_{i} \quad(i=1, \ldots, n),
\end{aligned}
$$

respectively, over K. This gives an upper bound. The lower bound is a nontrivial induction argument.

Results on the differential essential dimension

- Saw: $\operatorname{ed}_{F}^{\partial}($ general $n \times n$ matrix $D E)=e(n) \leq n$.
- $\mathrm{ed}_{F}^{\partial}\left(\mathrm{G}\right.$-tors $\left.{ }^{\partial}\right)=n$ for $G=(\mathbb{Z} / r \mathbb{Z})^{n}, \mathbb{G}_{m}^{n}, \mathbb{G}_{a}^{n}$.

Intuition. By Kummer theory and the Kolchin-Ostrowski
theorem, $(\mathbb{Z} / r \mathbb{Z})^{n}$-Galois extensions and \mathbb{G}_{m}^{n} - and \mathbb{G}_{a}^{n}-Picard-Vessiot extensions over K come from solvirg

$$
\begin{aligned}
& y_{i}^{r}=a_{i} \quad(i=1, \ldots, n), \\
& y_{i}^{\prime}=a_{i} y_{i} \quad(i=1, \ldots, n), \\
& y_{i}^{\prime}=a_{i} \quad(i=1, \ldots, n),
\end{aligned}
$$

respectively, over K. This gives an upper bound. The lower bound is a nontrivial induction argument.

Results on the differential essential dimension

- Saw: $\operatorname{ed}_{F}^{\partial}($ general $n \times n$ matrix $D E)=e(n) \leq n$.
- ${e d^{\partial}}_{F}\left(G\right.$-tors $\left.{ }^{\partial}\right)=n$ for $G=(\mathbb{Z} / r \mathbb{Z})^{n}, \mathbb{G}_{m}^{n}, \mathbb{G}_{a}^{n}$.

Intuition. By Kummer theory and the Kolchin-Ostrowski theorem, $(\mathbb{Z} / r \mathbb{Z})^{n}$-Galois extensions and \mathbb{G}_{m}^{n} - and \mathbb{G}_{a}^{n}-Picard-Vessiot extensions over K come from solving

$$
\begin{aligned}
& -y_{i}^{r}=a_{i} \quad(i=1, \ldots, n) \\
& -y_{i}^{\prime}=a_{i} y_{i} \quad(i=1, \ldots, n) \\
& -y_{i}^{\prime}=a_{i} \quad(i=1, \ldots, n)
\end{aligned}
$$

respectively, over K. This gives an upper bound. The lower bound is a nontrivial induction argument.

Results on the differential essential dimension

- Saw: $\operatorname{ed}_{F}^{\partial}($ general $n \times n$ matrix $D E)=e(n) \leq n$.
- ${e d^{\partial}}_{F}\left(G\right.$-tors $\left.{ }^{\partial}\right)=n$ for $G=(\mathbb{Z} / r \mathbb{Z})^{n}, \mathbb{T}_{m}^{n}, \mathbb{G}_{a}^{n}$.

Intuition. By Kummer theory and the Kolchin-Ostrowski theorem, $(\mathbb{Z} / r \mathbb{Z})^{n}$-Galois extensions and \mathbb{G}_{m}^{n} - and \mathbb{G}_{a}^{n}-Picard-Vessiot extensions over K come from solving

$$
\begin{aligned}
& -y_{i}^{r}=a_{i} \quad(i=1, \ldots, n) \\
& -y_{i}^{\prime}=a_{i} y_{i} \quad(i=1, \ldots, n) \\
& -y_{i}^{\prime}=a_{i} \quad(i=1, \ldots, n)
\end{aligned}
$$

respectively, over K. This gives an upper bound. The lower bound is a nontrivial induction argument.

Results on the differential essential dimension

- Saw: $\operatorname{ed}_{F}^{\partial}($ general $n \times n$ matrix $D E)=e(n) \leq n$.
- ${e d^{\partial}}_{F}\left(G\right.$-tors $\left.{ }^{\partial}\right)=n$ for $G=(\mathbb{Z} / r \mathbb{Z})^{n}, \mathbb{G}_{m}^{n}, \mathbb{G}_{a}^{n}$.

Intuition. By Kummer theory and the Kolchin-Ostrowski theorem, $(\mathbb{Z} / r \mathbb{Z})^{n}$-Galois extensions and \mathbb{G}_{m}^{n} - and \mathbb{G}_{a}^{n}-Picard-Vessiot extensions over K come from solving

$$
\begin{aligned}
& -y_{i}^{r}=a_{i} \quad(i=1, \ldots, n) \\
& -y_{i}^{\prime}=a_{i} y_{i} \quad(i=1, \ldots, n) \\
& -y_{i}^{\prime}=a_{i} \quad(i=1, \ldots, n)
\end{aligned}
$$

respectively, over K. This gives an upper bound. The lower bound is a nontrivial induction argument.

Results on the differential essential dimension

- Saw: $\operatorname{ed}_{F}^{\partial}($ general $n \times n$ matrix $D E)=e(n) \leq n$.
- $\mathrm{ed}_{F}^{\partial}\left(\mathrm{G}^{- \text {tors }^{\partial}}\right)=n$ for $G=(\mathbb{Z} / r \mathbb{Z})^{n}, \mathbb{G}_{m}^{n}, \mathbb{G}_{a}^{n}$.

Intuition. By Kummer theory and the Kolchin-Ostrowski theorem, $(\mathbb{Z} / r \mathbb{Z})^{n}$-Galois extensions and \mathbb{T}_{m}^{n} - and \mathbb{G}_{a}^{n}-Picard-Vessiot extensions over K come from solving

$$
\begin{aligned}
& -y_{i}^{r}=a_{i} \quad(i=1, \ldots, n), \\
& -y_{i}^{\prime}=a_{i} y_{i} \quad(i=1, \ldots, n), \\
& -y_{i}^{\prime}=a_{i} \quad(i=1, \ldots, n),
\end{aligned}
$$

respectively, over K. This gives an upper bound. The lower bound is a nontrivial induction argument.

Results on the differential essential dimension

- Saw: $\operatorname{ed}_{F}^{\partial}($ general $n \times n$ matrix $D E)=e(n) \leq n$.
- ${e d^{\partial}}_{F}\left(G\right.$-tors $\left.{ }^{\partial}\right)=n$ for $G=(\mathbb{Z} / r \mathbb{Z})^{n}, \mathbb{G}_{m}^{n}, \mathbb{G}_{a}^{n}$.

Intuition. By Kummer theory and the Kolchin-Ostrowski theorem, $(\mathbb{Z} / r \mathbb{Z})^{n}$-Galois extensions and \mathbb{G}_{m}^{n} - and \mathbb{G}_{a}^{n}-Picard-Vessiot extensions over K come from solving

$$
\begin{aligned}
& -y_{i}^{r}=a_{i} \quad(i=1, \ldots, n) \\
& -y_{i}^{\prime}=a_{i} y_{i} \quad(i=1, \ldots, n) \\
& -y_{i}^{\prime}=a_{i} \quad(i=1, \ldots, n)
\end{aligned}
$$

respectively, over K. This gives an upper bound. The lower bound is a nontrivial induction argument.

Cohomology

Cohomology classifies various classes of objects

In topology:
$\left\{\begin{array}{c}\text { rank } n \text { real vector bundles } \\ \text { over } Y \text { up to iso }\end{array}\right\} \cong H^{1}\left(Y, \underline{G L_{n}(\mathbb{R})}\right) \cong\left\{\begin{array}{c}\text { principal } \mathrm{GL}_{n} \text {-bundles } \\ \text { over } Y \text { up to iso }\end{array}\right\}$
In Galois cohomology:
$\left\{\begin{array}{c}\text { quadratic forms up to } \\ \text { linear change of variables over } K\end{array}\right\} \cong H^{1}\left(K, O_{n}\right) \cong \mathrm{O}_{n}-$ tors (K)

"Cohomology provides a bridge between different classes of objects."

Cohomology classifies various classes of objects

In topology:
$\left\{\begin{array}{c}\text { rank } n \text { real vector bundles } \\ \text { over } Y \text { up to iso }\end{array}\right\} \cong H^{1}\left(Y, \underline{G L_{n}(\mathbb{R})}\right) \cong\left\{\begin{array}{c}\text { principal } G L_{n} \text {-bundles } \\ \text { over } Y \text { up to iso }\end{array}\right\}$
In Galois cohomology:
$\left\{\begin{array}{c}\text { quadratic forms up to } \\ \text { linear change of variables over } K\end{array}\right\} \cong H^{1}\left(K, O_{n}\right) \cong \mathrm{O}_{n}-$ tors (K)
$\left\{\begin{array}{c}\text { iso classes of algebras over } K \\ \text { that are } \cong M_{n}\left(K^{\text {sep }}\right) \text { over } K^{\text {sep }} \\ \text { central simple algebras }\end{array}\right\} \cong H^{1}\left(K, P G L_{n}\right) \cong\left\{\begin{array}{c}\text { iso classes of varieties over } K \\ \left.\text { that are } \xlongequal[=]{ } \begin{array}{l}\text { Pen over } K^{\text {sep }}\end{array}\right\} \\ \text { Severi-Brauer varieties }\end{array}\right\}$

Cohomology classifies various classes of objects

In topology:

$$
\left\{\begin{array}{c}
\text { rank } n \text { real vector bundles } \\
\text { over } Y \text { up to iso }
\end{array}\right\} \cong H^{1}\left(Y, \underline{G L_{n}(\mathbb{R})}\right) \cong\left\{\begin{array}{c}
\text { principal } G L_{n} \text {-bundles } \\
\text { over } Y \text { up to iso }
\end{array}\right\}
$$

In Galois cohomology:
$\left\{\begin{array}{c}\text { quadratic forms up to } \\ \text { linear change of variables over } K\end{array}\right\} \cong H^{1}\left(K, O_{n}\right) \cong \mathrm{O}_{n}-$ tors (K)
$\left\{\begin{array}{c}\text { iso classes of algebras over } K \\ \text { that are } \cong M_{n}\left(K^{\operatorname{sep}}\right) \text { over } K^{\text {sep }} \\ \text { central simple algebras }\end{array}\right\} \cong H^{1}\left(K, P G L_{n}\right) \cong\left\{\begin{array}{c}\text { iso classes of varieties over } K \\ \text { that are } £ \text { © } \\ \text { Severi- overauer varieties }\end{array}\right\}$
"Cohomology provides a bridge between different classes of objects."

Cohomology classifies various classes of objects

We can construct a cohomology theory $H_{\partial}^{1}\left(K, G L_{n}\right)$ analogous to Galois cohomology, giving:

$$
\operatorname{DiffEq}_{n}(K) \cong \operatorname{Diff}_{n}(K) \cong H_{\partial}^{1}\left(K, G L_{n}\right) \cong \mathrm{GL}_{n}-\operatorname{tors}^{\partial}(K)
$$

Answer

General matrix differential equation

Under

$$
\operatorname{DiffEq}_{n}(K) \cong \operatorname{Diff}_{n}(K) \cong H_{\partial}^{1}\left(K, G L_{n}\right) \cong \mathrm{GL}_{n}-\text { tors }^{\partial}(K)
$$

one shows:
general DE \longmapsto a "generic" differential $G L_{n}$-torsor

Therefore:
$n \geq \operatorname{ed}_{F}^{\partial}$ (general DE) $=\operatorname{ed}_{F}^{\partial}$ (this generic differential $G L_{n}$-torsor)
$=e d_{F}^{\partial}\left(G L_{n}-\right.$ tors $\left.^{2}\right)$
$\geq \operatorname{ed}_{F}^{\partial}\left(\mathbb{G}_{m}^{n}-\right.$ tors $\left.^{\partial}\right)=n$

General matrix differential equation

Under

$$
\operatorname{DiffEq}_{n}(K) \cong \operatorname{Diff}_{n}(K) \cong H_{\partial}^{1}\left(K, G L_{n}\right) \cong \mathrm{GL}_{n}-\text { tors }^{\partial}(K)
$$

one shows:
general DE $\longmapsto a$ "generic" differential $G L_{n}$-torsor
Therefore:
$n \geq e d_{F}^{\partial}$ (general DE) $=\operatorname{ed}_{F}^{\partial}$ (this generic differential $G L_{n}$-torsor)
$=\mathrm{ed}_{F}^{\partial}\left(\mathrm{GL}_{n}-\right.$ tors $\left.^{\partial}\right)$

"Any generic differential torsor is the most complicated in its class of objects."

General matrix differential equation

Under

$$
\operatorname{DiffEq}_{n}(K) \cong \operatorname{Diff}_{n}(K) \cong H_{\partial}^{1}\left(K, G L_{n}\right) \cong \mathrm{GL}_{n}-\text { tors }^{\partial}(K)
$$

one shows:
general DE \longrightarrow a "generic" differential $G L_{n}$-torsor

Therefore:

$$
\begin{aligned}
n \geq e_{F}^{\partial}(\text { general } D E) & =e d_{F}^{\partial}\left(\text { this generic differential } G L_{n} \text {-torsor }\right) \\
& =\operatorname{ed}_{F}^{\partial}\left(G L_{n}-\text { tors }{ }^{\partial}\right) \\
& \geq e d_{F}^{\partial}\left(\mathbb{G}_{m}^{n} \text {-tors }\right)=n
\end{aligned}
$$

Subgroup bound.

General matrix differential equation

Under

$$
\operatorname{DiffEq}_{n}(K) \cong \operatorname{Diff}_{n}(K) \cong H_{\partial}^{1}\left(K, G L_{n}\right) \cong \mathrm{GL}_{n}-\text { tors }^{\partial}(K)
$$

one shows:
general DE $\longmapsto ~ a ~ " g e n e r i c " ~ d i f f e r e n t i a l ~ G L_{n}$-torsor

Therefore:

$$
\begin{aligned}
n \geq e_{F}^{\partial}(\text { general DE }) & =e d_{F}^{\partial}\left(\text { this generic differential } G L_{n} \text {-torsor }\right) \\
& =\operatorname{ed}_{F}^{\partial}\left(G L_{n} \text {-tors }{ }^{\partial}\right) \\
& \geq e d_{F}^{\partial}\left(\mathbb{G}_{m}^{n} \text {-tors }\right)=n
\end{aligned}
$$

Computation.

General matrix differential equation

Under

$$
\operatorname{DiffEq}_{n}(K) \cong \operatorname{Diff}_{n}(K) \cong H_{\partial}^{1}\left(K, G L_{n}\right) \cong \mathrm{GL}_{n}-\text { tors }^{\partial}(K)
$$

one shows:
general DE \longmapsto a "generic" differential $G L_{n}$-torsor

Therefore:

$$
\begin{aligned}
n \geq \operatorname{ed}_{F}^{\partial}(\text { general DE }) & =\operatorname{ed}_{F}^{\partial}\left(\text { this generic differential } G L_{n} \text {-torsor }\right) \\
& =\operatorname{ed}_{F}^{\partial}\left(G L_{n} \text {-tors }{ }^{\partial}\right) \\
& \geq e d_{F}^{\partial}\left(\mathbb{G}_{m}^{n} \text {-tors }\right)=n
\end{aligned}
$$

$\Rightarrow e(n)=e^{\partial}($ general $D E)=n$.

Future directions

Simplifying differential equations with more

 general transformations$$
\begin{aligned}
& p(y)=y^{(n)}+a_{n-1} y^{(n-1)}+a_{n-2} y^{(n-2)}+\cdots+a_{0} y \\
& \stackrel{y=e^{-\frac{1}{n} \int_{n-1}} \sim}{\sim} q(z)=z^{(n)}+0 \cdot z^{(n-1)}+b_{n-2} z^{(n-2)}+\cdots+b_{0} z
\end{aligned}
$$

How many more parameters can we eliminate from the general differential equation if we allow more transformations like exp and f?

Simplifying differential equations with more general transformations

$$
\begin{aligned}
& p(y)=y^{(n)}+a_{n-1} y^{(n-1)}+a_{n-2} y^{(n-2)}+\cdots+a_{0} y \\
& y=e^{-\frac{1}{n} \int a_{n-1}} z(z)=z^{(n)}+0 \cdot z^{(n-1)}+b_{n-2} z^{(n-2)}+\cdots+b_{0} z
\end{aligned}
$$

How many more parameters can we eliminate from the general differential equation if we allow more transformations like exp and \int ?

Thanks! Questions?

Extra slides

Cohomology

Γ a linear algebraic group over C.
G a linear algebraic group over C with compatible Γ-action.

A cocycle is a morphism of varieties $a: \Gamma(C) \rightarrow G(C): \sigma \mapsto a_{\sigma}$ satisfving the usual cocvcle condition in Galois cohomologv.

Two cocycles a and b are equivalent if there exists $c \in \Gamma(C)$ such that $a_{\sigma}=c \cdot b_{\sigma} \cdot c^{-1}$.

$$
\begin{aligned}
& H_{\partial}^{1}(\Gamma, G)=\{\text { cocycles up to equivalence }\} \\
& H_{\partial}^{1}(F, G)=\underset{\begin{array}{c}
\text { Picard-Vessiot } \\
\text { extension }
\end{array}}{\lim _{\partial \rightarrow}} H_{\partial}^{1}\left(\mathrm{Gal}^{\partial}(R / F), G\right)
\end{aligned}
$$

Cohomology

Γ a linear algebraic group over C.
G a linear algebraic group over C with compatible Γ-action.

A cocycle is a morphism of varieties $a: \Gamma(C) \rightarrow G(C): \sigma \mapsto a_{\sigma}$ satisfying the usual cocycle condition in Galois cohomology.

Two cocycles a and b are equivalent if there exists $c \in \Gamma(C)$ such that $a_{\sigma}=c \cdot b_{\sigma} \cdot c^{-1}$.

$$
H_{\partial}^{1}(\Gamma, G)=\{\text { cocycles up to equivalence }\}
$$

Cohomology

Γ a linear algebraic group over C.
G a linear algebraic group over C with compatible Γ-action.

A cocycle is a morphism of varieties $a: \Gamma(C) \rightarrow G(C): \sigma \mapsto a_{\sigma}$ satisfying the usual cocycle condition in Galois cohomology.

Two cocycles a and b are equivalent if there exists $c \in \Gamma(C)$ such that $a_{\sigma}=c \cdot b_{\sigma} \cdot c^{-1}$.

$$
H_{\partial}^{1}(\Gamma, G)=\{\text { cocycles up to equivalence }\}
$$

$H_{2}^{1}(F, G)=$

Cohomology

Γ a linear algebraic group over C.
G a linear algebraic group over C with compatible Γ-action.

A cocycle is a morphism of varieties $a: \Gamma(C) \rightarrow G(C): \sigma \mapsto a_{\sigma}$ satisfying the usual cocycle condition in Galois cohomology.

Two cocycles a and b are equivalent if there exists $c \in \Gamma(C)$ such that $a_{\sigma}=c \cdot b_{\sigma} \cdot c^{-1}$.

$$
H_{\partial}^{1}(\Gamma, G)=\{\text { cocycles up to equivalence }\}
$$

$$
H_{\partial}^{1}(F, G)=\underset{R / F}{\lim } H_{\partial}^{1}\left(\operatorname{Gal}^{\partial}(R / F), G\right)
$$

Picard-Vessiot

